
Voleso
Programmer's Guide

Scott Augé

First Edition

Amduus Information Works, Inc.
http://www.amduus.com

http://www.amduus.com/

Voleso: Pogrammer's Guide

Copyright © 2011 by Scott Augé
All rights reserved.

Printed in the United States of America.

Published By:

Amduus Information Works, Inc.
1818 Briarwood, Flint, MI 48507
http://www.amduus.com

Printing History:
August 2011: First Edition

While every precaution was taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

Table of Contents
Introduction.. 1
Installation..1
Loading A Template... 2

From a file:.. 2
From HTML text:.. 2

Rendering The Template File...4
Commenting...5
Inserting Files...6
Simple Replacement.. 8
Sections.. 9
Future... 12
About..13

4

Introduction
The first time one needs to rework the HTML for look

and feel in an application, one quickly learns about the

need for separating the HTML from the application code.

HTML Mapping was an attempt at this, however, there is

still the need for a Progress Development License as well

re-compiling on changed code.

Other languages have encountered this need – PHP with

the Smarty template processor as well the various one's

used in the C and C++ world. These processors do not

require re-compiling and allow for HTML designers to

work outside of the application code environment.

Thus comes Voleso, a tool that allows developers to

separate their code from the HTML of the web page.

Voleso is influenced by the PHP Smarty template system.

This is because of the language some elements cannot be

exact (for example display() in Smarty cannot be

accomplished because it is a keyword in the ABL), however

those familiar with Smarty should be functional with Voleso

quickly.

Why Smarty? Because it is expected there will be a lot

more designers familiar Smarty than other systems.

Voleso was named by an automatic project naming tool

that can be found at http://amduus.com/ProjectNamer/

1

http://amduus.com/ProjectNamer/

Installation
Voleso is distributed in a zip file with the format:

voleso.yyyyjjjhhmmss.zip

The date stamp acts as a build number. The values are:

yyyy Year of build

jjj Julian day of build

hh Hour of build

mm Minute of build

ss Seconds of build

Within one will find a directory tree:

/doc Documentation

/src Directory leading to the
com.amduus... file structure.

/schema Any tables if needed

/script Any scripts if needed

One should unzip the file and set the PROPATH to

include the /src directory. One may want to have multiple

versions of the software on for testing purposes. Simply

changing the PROPATH can aid in this.

Voleso requires Progress ABL version 10.2B or better.

Loading A Template
The templates are HTML files with special markup that

are accessed on the broker machine of the ABL program.

There are multiple ways of loading an HTML template

file.

From a file:

The most common way is from a file. One can use the

constructor with simply the file name in a PROPATH

oriented fashion:

define variable S as class
com.amduus.voleso.clsVoleso no-undo.

S = new
com.amduus.voleso.clsVoleso("oas/template/test1.html"
).
S:HTMLRender(stream WebStream:handle).

delete object S.

Here one can see the class is instanced with the name of

a template file as it's argument.

Another is from the Reset method, which allows the re-

use of an object without having to destroy it. (As of this

writing, a little expensive in the ABL to destroy and then

re-make an instance.)

S:Reset(“oas/template/test1.html").

2

From HTML text:

To do so from HTML text, be sure the HTML text is of

longchar type and simply call the before mentioned

methods and constructors. They are overloaded.

3

Rendering The Template File
Once the template file has been loaded and all the tags

processed, one will want to render the file. This is

accomplished by sending the handle of the stream you wish

to render the file at. The following example renders the file

to the WebStream1 found in the Webspeed product from

Progress Software:

define variable S as class
com.amduus.voleso.clsVoleso no-undo.

S = new
com.amduus.voleso.clsVoleso("oas/template/test1.html"
).
S:IncludeFile ("oas/template/testinc.html").
S:HTMLRender(stream WebStream:handle).

delete object S.

One can render a file also to an operating system stream

for email, later web server pick up, etc.

1 WebStream is used by the {&OUT}, etc. predefinitions.

4

Commenting
Commenting is accomplished by surrounding the text

with {* and *}.

These comments are removed from the HTML upon

loading it into the class. HTML based comments will

remain! Example in bold:

<html>
<body>
Test of include
{* This comment should be removed *}
{include name=oas/template/testinc.html }<!-- Should
still be here -->
{section name=1}
Counter is {$Value1}

{/section}
</body>
</html>

One deletes comments with the

:RemoveSmartyComments() method. It will search the

template for such comments and delete them. Often one

will want to do this before any processing – it helps

eliminate the size of the template.

These comments will appear in rendered HTML (since

they do not use HTML markup!)

Any comments in HTML markup will be available in the

output HTML.

5

Inserting Files
There are times when one will want to insert HTML

files into HTML files. For example, header.html and

footer.html files might be useful instead of propagating that

code over and over and over.

When processing a file, the programmer should

perform the inserts of the files first – this way one can be

sure all the other tags are in play before they are replaced

with real data.

Inserting By File Name

Inserting files is done with the include tag, which takes

as a field the “name” attribute. This name attribute is the

PROPATH based name of the file to load into the template.

<html>
<body>
Test of include
{* This comment should be removed *}
{include name=oas/template/testinc.html}<!-- Should
still be here -->
{section name=1}
Counter is {$Value1}

{/section}
</body>
</html>

Note at the time, no quoting is done on the name, unlike

in HTML development.

The ABL used to accomplish this is done through

the :IncludeFile() method:

6

define variable S as class
com.amduus.voleso.clsVoleso no-undo.

S = new
com.amduus.voleso.clsVoleso("oas/template/test1.html"
).
S:IncludeFile ("oas/template/testinc.html").
S:HTMLRender(stream WebStream:handle).

delete object S.

Automatically Inserting Files

One can also include all the include files with the

:AutoIncludeFile() method. This is helpful for making

sure all the templates related to the page are already loaded

before doing other substitutions.

define variable S as class
com.amduus.voleso.clsVoleso no-undo.

S = new
com.amduus.voleso.clsVoleso("oas/template/test1.html"
).
S:AutoIncludeFile ().
S:HTMLRender(stream WebStream:handle).

delete object S.

This is a recursive algorithm, so one can include files

within included files. Beware of circular includes however!

7

Simple Variable Replacement
One of the main purposes of the template system is to

insert data where there are data portions. This is done with

the {&var} or the webspeed delimiters `` tag. (Note with

the webspeed delimiters these are no longer associated with

an PUT statement, so they MUST be simply the name of the

variable. The programmer decides the format.)

An example in the template file is bolded below:

<p>This is testinc.html {$Value}</p>

or

<p>This is testinc.html `Value`</p>

In this example ABL code, the variable Value will be

replaced with Scott.

define variable S as class
com.amduus.voleso.clsVoleso no-undo.

S = new
com.amduus.voleso.clsVoleso("oas/template/test1.html"
).
S:IncludeFile ("oas/template/testinc.html").
S:AssignVar("Value", "Scott").
S:HTMLRender(stream WebStream:handle).

delete object S.

One can send the following types to :AssignVar():

• LongChar

8

• String

• Date

• Integer

• Decimal

• Logical

Note that Logical uses the method Logical2String that

will return either “yes”, “no”, or “?” as string values! It

may not use the values set up in the format of the field. So

if you have a field formatted as “Bolted/Unbolted” as the

yes/no value, it will NOT return Bolted or Unbolted, but

will return yes or no.

The :AssignVar() method is overloaded in many ways,

allowing for different types as well as formatting for them.

Review the source code for the various options available in

the clsVoleso.cls file.

In the future, it is planned to include the format

specified in the HTML text rather than relying on the

programmer.

9

Sections
There are two purposes to sections: there will come

times when the same data type will need to be repeated over

and over. Other times they will need to be deleted or

shown.

Looping Sections

For example, some data being placed into a table or

AJAX based tool. This is a good place to use sections.

Sections are delimited by the section tag. There is a

name to the section so as developers will know how to pull

the section out when there is more than one.

<html>
<body>
Test of include
{* This comment should be removed *}
{include name=oas/template/testinc.html }<!-- Should
still be here -->
{section name=1}
Counter is {$Value1}

{/section}
</body>
</html>

In this example, we instance two objects called S and T

which are both Voleso classes. S will contain the template

file. Later on, when processing a section, T will be used.

We use the :GetSection() method in S to pull out a

section by the name “1” into T. This way T will have the

template code bounded by the section tags.

10

Since T is a Voleso class object, we can use the same

routines for changing out variables, etc. within the section.

Since it is a loop, we need to call :NextSection() in T

to repeat the template code into the out-going code.

When we are done, we :ApplySection() with the

results of T where the “1” section can be found. The entire

section will be replaced with the activities that occurred on

T within S.

Once we have done so, we can either delete the object T

or re-use it via the :Reset() method.

Finally we use :HTMLRender() method to send the

template with all it's data filled out to the user.

define variable S as class
com.amduus.voleso.clsVoleso no-undo.
define variable T as class
com.amduus.voleso.clsVoleso no-undo.

define variable i as integer no-undo.

S = new
com.amduus.voleso.clsVoleso("oas/template/test1.html"
).
S:IncludeFile ("oas/template/testinc.html").
S:AssignVar("Value", "Scott").

/* Deal with a section */

T = new com.amduus.voleso.clsVoleso (S:GetSection
("1")).

{&OUT} "Template:".
T:HTMLRender(stream webstream:handle).

do i = 1 to 3:

11

 T:AssignVar ("Value1", string(i)).
 if i < 3 then T:NextSection().

end. /* do */

S:ApplySection("1", T).

delete object T.

S:HTMLRender(stream WebStream:handle).

delete object S.

Showing A Section

There will be times when it is optional to show a section

of the template or not. To specifically show a section

(without the section delimiters, call

the :ShowSection(NameOfSection) method. This will

leave any computations that have occurred in the section

alone, it mostly removes the delimiters for the section.

When using :ApplySection(NameOfSection,

clsVoleso) one does not need to call :ShowSection().

Deleting A Section

There are times when a section needs to be deleted.

Simply call the :DeleteSection(NameOfSection) call

and the section (and subsections) will be replaced with “”.

It is best to delete sections as soon as possible so the

string processing works with the smallest strings possible.

12

Yanking Sections From A Template
There is a special object called clsRawSectionYanker.

It will receive either a longchar containing the template it's

self or a character containing the path to the file containing

the template.

One can use the :YankSection(NameOfSection)

method to pull back a section complete with it's delimiters.

Often this is used for text to be replaced by other text after

computing.

If one wants the section without it's delimiters, use the

:YankSectionNoDelimiters(NameOfSection) method.

Often this is the text that is sent to computation to be

manipulated.

This object will not offer any methods to manipulate

template text, this is the purpose of the clsVoleso file.

The clsVoleso object makes use of this class for it's

own purposes, but it is documented here for completeness.

13

Troubleshooting
Problem: The screen comes up blank! Or the HTML is

all over the place.

Symptoms: Agent replies in the log file of the agent:

(Procedure: 'ExtractSection
com.amduus.voleso.clsVoleso' Line:276) ** Starting
position for SUBSTRING, OVERLAY,
etc. must be 1 or greater. (82)

Resolution: Often a section tag has the wrong

delimiting characters. For example, the one following has a

> where a } should be:

14

Future
There are many features of Smarty that are not included

in this version.

If you add some, please be sure to pass them along to

the author at sauge@amduus.com . You will be included in

the contributors section! This is often good for job

references.

15

mailto:sauge@amduus.com

About
Scott Augé

Scott Augé has been programming in Progress since V6.

He also develops in C++, Javascript, HTML, among

other languages. He has studied Computational

Mathematics and Marketing. For more information,

consult his linkedin.com profile at

http://www.linkedin.com/in/scottauge .

Amduus Information Works, Inc.

Amduus Information Works, Inc. develops enterprise

level software for commercial/non-profit organizations

and government agencies. Industries/agencies include

manufacturing, service, health care, judicial systems, law

enforcement, e-commerce, and real estate. The company

develops software per specification as well runs it's own

Software as a Service (SaaS) applications.

16

http://www.linkedin.com/in/scottauge

	Introduction
	Installation
	Loading A Template
	From a file:
	From HTML text:

	Rendering The Template File
	Commenting
	Inserting Files
	Inserting By File Name
	Automatically Inserting Files

	Simple Variable Replacement
	Sections
	Looping Sections
	Showing A Section
	Deleting A Section

	Yanking Sections From A Template
	Troubleshooting
	Future
	About

