

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

COMPUTING INTEGRITY
INCORPORATED
60 Belvedere Avenue
Point Richmond, CA 94801-4023
510.233.5400 Sales
510-233.5444 Support
510.233.5446 Facsimile

Replacing A Session SuperProcedure With A Class In OOABL
26 March 2006

Progress Software has numerous references in documentation and whitepapers to the parallels
between superprocedures and classes, including a fairly lengthy, if somewhat flawed example in the
Getting Started: Object-Oriented Programming manual for 10.1A that shows two parallel examples,
one worked using superprocedures and one worked using classes. However, what is not shown is
an example in which a class replaces a superprocedure while retaining the original program structure
as a set of procedures. For a local super-procedure, this substitution is simple because the class does
not need to be accessible except from the procedure that instantiates it. For a session
superprocedure, a different functionality is required because the internal procedures of the session
superprocedure become a part of the name space of procedures that did not invoke the
superprocedure.

In other object-oriented languages, one would immediately think that this requirement required a
name service such as JNDI or the use of singletons. The use of a name service seems unattractive
for something as “intimate” as a session superprocedure because the single-threaded nature of the
Progress client1 seems to imply that the class would be running in a different session. However,
OE10.1A does not include an implementation of singletons, so what does one do?

An example is provided in this document with accompanying sample code2 that illustrates a
technique that addresses this problem by using the FIRST-OBJECT method of the session handle and
the NEXT-SIBLING method on the object identified by the FIRST-OBJECT method3 to locate a
previously instantiated instance of the object one desires to use in common. Before going into
specifics, let us consider the example application that we desire to enhance.

The all procedures example provided illustrates one typical pattern of usage of session
superprocedures, i.e., as a repository for session state information that might be required anywhere
in the call stack. In this example, the file example/Util/ContextSP.p is a superprocedure that
maintains information on login date, login fiscal year and period, function name and description,
and the application code. This is instantiated by example/Test/Main.p, which takes the role that
might be played by a menu system in instantiating the session superprocedure, providing it with
initial values, and then calling other functions, which use the session superprocedure to access those
values as needed. In this case, two calls are made to example/Test/Function.p, as if it was two
different programs or functions below the menu system, and a display is made to illustrate retrieval
of the values from the session superprocedure. To run this example, simple unzip the sample files
into a directory on the PROPATH and enter run example/Test/Main.p into the procedure editor.

1 See Use Case for Multi-threading in the 4GL, available at http://www.cintegrity.com/downloads.html .
2 Available at http://www.cintegrity.com/downloads.html .
3 This technique was originally suggested by Evan Bleicher of Progress Software during an exchange which was part of the beta program
for 10.1A. Mr. Bleicher’s suggested technique proposed using these constructs within the programs themselves, i.e., in the terms of the
examples provided here, the FIRST-OBJECT and NEXT-SIBLING usage would have been in example/Test/NewFunction.p. This
was considered unacceptable to us because it would have required a s second conversion when singletons later became available, so we
developed the technique illustrated here using these methods within the constructor of a façade class.

Replacing A Session SuperProcedure With A Class In OOABL — 26 March, 2006 — Page 2

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

As noted in comments in the programs, in real world usage, the values initially set in the
superprocedure would be derived from a more complex context than being simply assigned fixed
values. Similarly, the values actually retrieved in lower level procedures would be limited to those
that were actually needed, rather than retrieving all values as is shown here for illustration. While
the example is very simple, the technique that we will illustrate for replacing
example/Util/ContextSP.p with a class is a technique that we believe will work with any more
complex requirement, excepting that we are making no effort to imitate SEARCH-SELF versus SEARCH-
TARGET functionality.

To substitute this super procedure with a class we will, of course, need to change the invoking code
in example/Test/Main.p4 from RUN and SESSION:ADD-SUPER-PROCEDURE to NEW. However, we will
also have to insert new code into example/ Test/Function.p because there is nothing in the
existing OOABL implementation that would provide the name space of the object to that procedure
without some specific connection. This seems unfortunate, since it does imply having to modify all
programs in which a session superprocedure is accessed, but our feeling is that a modification that
will be usable as is in future OO transitions is a very different issue than having to insert some code
that will need to be changed again when the language evolves further. Thus, in this example we are
making the choice that a change that will be either exactly what we would do were singletons
available now or which can be easily refactored is an acceptable level of modification because it
won’t have to be re-done. Some may not be willing to make this level of modification, but then they
will be blocked from replacing session superprocedures and will still be blocked when singletons
become available in the language.

In a true, full OO environment, what we would expect to do in this other procedure or class is to NEW
the same object again, but because it was declared it as a singleton, the execution environment
would attach us to the previously instantiated copy instead of creating a new one. This is the form
of the change that we are using, i.e., the NEW in the function is identical to the NEW in the main
program, but one instantiates a new object and the other attaches to an existing object.

Since we can’t yet declare a singleton class directly, what we are showing here is creating two classes
com.example.Util.Common.LoginContext.cls5 and
com.example.Util.Common.LoginContextImpl.cls6, the latter being close to the singleton class we
would like to have created and the former being a façade which stands in for the “real” class and
provides us with the singleton behavior while passing through method calls to the “real” class. This
should allow us later, when there are true singletons in the language, to replace the façade with the
“real” class, add the language structure for defining a singleton, and leave all of the other programs
unmodified.

The key to this technique, then, is this code from the constructor of
com.example.Util.Common.LoginContext.cls:

4 In order to keep the before and after versions separate, we have used NewMenu.p and NewFunction.p for the modified versions, but in practice
the original procedure names would be retained.
5 Note that as a part of implementing classes here we are switching from a naming convention in which example is a group of related functions
below a point on the PROPATH to putting the class code underneath com/example. This naming convention of putting code underneath the three
letter domain type, then the domain name, is reasonably standard in other OO languages and allow packages from multiple sources to appear in
the same source tree without conflicting. We have also elected to put the class one level deeper in the directory hierarchy in the expectation that
we will want to organize related groups of classes within Util.
6 We are aware that the Impl name component is not usually used in this way in the Java World, but it seems such an appropriate name
convention for the current situation that we are using it anyway.

Replacing A Session SuperProcedure With A Class In OOABL — 26 March, 2006 — Page 3

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

mob_SessionObject = session:first-object.
FIND-CONTEXT:
do while valid-object(mob_SessionObject):
 mch_ObjectName = mob_SessionObject:getClass():TypeName.
 if mch_ObjectName eq "com.example.Util.Common.LoginContextImpl"
 then do:
 cob_LoginContextImpl = cast(mob_SessionObject, "com.example.Util.Common.LoginContextImpl").
 leave FIND-CONTEXT.
 end.
 mob_SessionObject = mob_SessionObject:next-sibling.
end.
if not valid-object(cob_LoginContextImpl)
then do:
 cob_LoginContextImpl = new com.example.Util.Common.LoginContextImpl().
end.

In this code, what happens is as follows:
1. Find the first object in the session.
2. Loop while there are still valid objects.
3. Test to see if the current object has the desired name.
4. If yes, then cast the object to the local copy and leave the loop.
5. If not, get the next object, as long as additional ones are available.
6. When the loop has been finished, see if we have a valid object as desired and, if not, create a

new one.
Thus, the first time this code is executed, the object will not be found and a new one will be created,
but the second and following times the existing object will be found and cast to the local reference.
I.e., we will end up with one instance of the façade object for each place it is referenced, but only
one copy of the actual “pseudo-singleton”.

While many uses of session superprocedures are such that there is no concern over cleaning up the
object when the last reference to it has gone away, for purposes of illustration in this example we
have included a reference counting technique for determining when there are no longer any
references to the “real” object. Thus, each NEW of the façade object will increment the reference
count of the “real” object by one and each DELETE of the façade object will decrement the count of
the “real” object by one and delete that object if the count drops to zero. To implement this
technique, one includes a DELETE OJBECT in the programs that NEW the object, providing a very clean
regimen of object management. If one wanted the object to persist until the end of the session for
possible later use, one would not include this code.

To run this example, simple unzip the sample files into a directory on the PROPATH and enter run
example/Test/NewMain.p into the procedure editor. For the purpose of seeing how the number of
objects grows and shrinks, we have included a method called ShowObjects in both
example/Test/NewMain.p and example/Test/NewFunction.p, the modified versions of the programs
from the procedure-only example. This method will display all objects that exist in the session at the
time the procedure is executed. You will note running the example the following sequence:
1. After the initial NEW of LoginContext, there are two objects, LoginContext and LoginContextImpl.
2. After the NEW in NewFunction.p, there are three objects, two LoginContext, but only the original

LoginContextImpl.
3. After the DELETE in NewFunction.p, we are back to the original two.
4. Steps two and three repeat for the second call.
5. After the DELETE in the top level procedure, no objects remain.

Replacing A Session SuperProcedure With A Class In OOABL — 26 March, 2006 — Page 4

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

While this is a simple example, we hope that it will illustrate a useful technique for those wishing to
begin using classes in association with their existing procedure-based code by allowing them to
substitute classes for what might be considered their closest procedural counter-part, the
superprocedure. This example is specifically oriented toward the problem of how to use a class in
place of an existing session superprocedure and is very much not intended as an indication of how
one would provide similar functionality in an object call stack, since there are better and more direct
techniques for that. However, it does seem likely that this same technique will be useful for other
functions in a mixed procedure-object environment and may be useful in a pure OO environment
for “discover my context” type methods.

