

OpenEdge
Application Example

AutoEdge

Programming Standards & Naming Conventions

TMH
Note
With comments by Thomas Mercer-Hursh

© 2006 Progress Software Corporation 2 November 06

Contents

1 Introduction .. 3
2 Why have standards? ... 3
3 Database tables .. 4
4 Database Fields ... 4
5 Indexes ... 5
6 Sequences ... 5
7 Database triggers... 5
8 Naming conventions and references.. 6
9 Programming.. 9
10 Restricted constructs.. 13
11 Modelling ... 14

© 2006 Progress Software Corporation 3 November 06

1 Introduction

This document outlines a set of Programming standards and naming conventions
to be used on the OpenEdge Application Example application. These standards
are a culmination of many other works including guidelines from education, John
Sadd’s whitepapers and the Developers Guide.

2 Why have standards?

Before outlining the standards themselves it is worth considering why they are
needed in the first place.

Standards are important to programmers for a number of reasons:

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Code conventions improve the readability of the software, allowing
engineers to understand new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure it is as
well packaged and clean as any other product you create.

Encourage good practice

Development standards should reflect ‘good practice’ so that by simply keeping to
the standards developers can improve the quality of the code they produce. This
is especially important for less experienced developers.

Standards also provide a measure against which code can be reviewed (use of
code reviews can have a major impact on product quality).

Must be used

Having development standards is of no benefit if they are not adhered to.
Standards can be implemented more easily if developers accept them. A major
factor in this is that they are not over-elaborate or obstructive.

© 2006 Progress Software Corporation 4 November 06

3 Database tables

• Tables should have a descriptive name that identifies the purpose of the table.

• They should only use alphanumeric characters.

• The first letter of each word in the name should be upper case and multi-word
field names concatenated, e.g. TestDrive.

• Dump file names should be meaningful and unique.

4 Database Fields

• Field names are to be descriptive and only use alphanumeric characters.

• The first letter of each word in the field name should be upper case and multi-
word field names concatenated, e.g. EngineSize.

• The primary unique key in all tables should be an ID field of type Integer. The
name should be composed by the table name and an upper-case ‘ID’ at the
end, e.g. “OrderID”.

• Field names should be prefixed by the table name, unless they are foreign key
fields from other tables. So the “name” field in the car table should be
Car.CarName

• Fields that represent the same value, should have the same name and format
in each table they are used, e.g. if the key for the Customer table is
CustomerID, it will be referred to as Customer.CustomerID in the customer
table and Order.CustomerID in the order table.

• All date fields are to have the format “99/99/9999”.

• All logical fields should, by default have a format of “Yes/No”. However, if the
field does not present a yes/no answer, but simply a choice between only two
possible values (e.g. male/female) the format can reflect these values.

• Fields are always to be given labels and help text, even if it is thought unlikely
that they will be displayed on a screen or report.

• Descriptions are to be filled in outlining the role of the field, unless the help
text is sufficient.

• If the mandatory box is checked then the initial value must be set to unknown
(?).

• Fields are not to be made case-sensitive.

TMH
Note
My own preference is to prefix table names with tb_ so that they stand out in the code as different from any buffers and so that one can search for them unambiguously

TMH
Note
One should consider adopting Int64 with 10.1B, although there is also a good argument for using a globally unique identifier

TMH
Note
I prefer prefixing field names with the datatype, i.e., ch_, in_, etc.

© 2006 Progress Software Corporation 5 November 06

• Fields are not to be given assign triggers.

• Fields are not to be given a number of extents.

5 Indexes

• All tables should have a single, numeric field that can be used to uniquely
identify the row. This should be in a unique, primary index.

• Index names should be left meaningful.

• Unique indexes are prefixed with a lower case ‘u’, e.g. uCustomerId.

• The first letter of the first field in non-unique indexes will be lower case, e.g.
shortName.

• The description field should be filled in to indicate why the index was created.

6 Sequences

• Sequence names should start ‘seq’ followed for the field that they are being
used to generate a value for, e.g. seqCustomerId.

7 Database triggers

• Trigger code is to be separated from the rest of the application code into a
directory called triggers.

• Trigger procedures should named after the table they are for with a suffix of ‘-
t.p’ where t is the type, ‘c’, ‘d’ or ‘w’, e.g. the Customer table would have a
create trigger called customer-c.p.

• In the data-dictionary triggers will be referenced by a relative path starting
with triggers, e.g. triggers/ customer-c.p.

• All path and trigger names are to be lower case.

• Within the triggers themselves normal programming standards will apply.

• Create triggers will generally be restricted to assigning values to key fields
from sequences.

• Delete triggers will be used to prevent deletions from happening, deleting
related records, updating audit tables, and updating count or total fields if
appropriate.

• Write triggers will be used for updating fields with system generated values
(dates, derived amounts, etc.) and auditing.

TMH
Note
My inclination is to prefix the name with ix_ and to name it BySorfField, e.g., ix_ByCustomerID. I haven't felt motivated to mark unique indexes.

TMH
Note
I would argue against the use of database triggers in general since it divides business logic into two separate locations. Better is to use data access components which include all logic.

© 2006 Progress Software Corporation 6 November 06

• No user-interface code is to be placed in triggers. To stop a trigger running it
will return error and a message. It will then be up to the procedure generating
the transaction to output the message in the most appropriate way. For
example the delete trigger for the Customer table may have the following
check in it:

IF CAN-FIND(FIRST Order WHERE Order.CustomerId =

 Customer.CustomerId NO-LOCK) THEN

 RETURN ERROR "Customer has orders and can not be deleted.".

8 Naming conventions and references

Case

• All 4GL statements, functions, attributes, methods, etc. to be in upper case.

• Database tables and fields should not be abbreviated.

• Preprocessor names are to be in upper case.

• References to database tables, fields, sequences and indexes will follow the
case guidelines given earlier.

• Field names will always be prefixed with table names, but not database
names. This applies to temp-tables as well as database tables.

Variables

• Variable names must only contain letters and numbers. No other characters
are permitted.

• The variable name should then be meaningful and have the first letter of each
word capitalised, e.g. iTotalCars.

• All variables are to have the following data-type prefixes:

Data type Prefix

Buffer b or just the table name

Character c

Com-handle ch

Date t

Decimal d

Handle h

Integer i

Logical l

TMH
Note
A matter of taste, obviously!

TMH
Note
My preference is to use a consistent two character prefix to indicate datatype and to separate this prefix from the main name with an underscore. This is marginally harder to type, but is more readable.See my separate document at http://www.oehive.org/Hungarian for specifics.

© 2006 Progress Software Corporation 7 November 06

Data type Prefix

Memptr p

Raw w

Recid re

Rowid r

Stream s

Temp-table tt or e for use in ProDataSets

Work-table w

ProDataSet ds

DataSet-Handle dh

Before-Table <temp-table>Before

• Variables that are declared in the main block of a procedure (i.e. not in a

user-defined function, trigger or internal procedure) have an additional prefix
of ‘g’, e.g. gcOutputFile.

• Parameters follow the same conventions as variables, but with an additional
prefix of ‘p’, e.g. pdInvoiceTotal.

Preprocessors & Include File Arguments

• Proprocessor names and named arguments to include files should follow the
same naming conventions as variables, but are always prefixed with ‘x’, e.g.

&scop xiNumDays 7

&scop xcDayShortNames "Mon,Tue,Wed,Thu,Fri,Sat,Sun":U

• Preprocessors and named arguments to include files never have the ‘p’ or ‘g’

prefix that variables can have.

• Preprocessors that are defined, but have no value (e.g. those designed to stop
multiple inclusions of include files) should be defined as xDefFilename, for
example:

/* Prevent multiple inclusions of this file. */

&IF DEFINED(xDefSystem) = 0 &THEN

 &GLOBAL-DEFINE xDefSystem

 …

• Preprocessors and named arguments to include files that do not resolve to a

particular data-types are prefixed with x only, e.g.

&scop xcTableList "Customer,Order":u

&scop xTables Customer Order

TMH
Note
The standard described in http://www.oehive.org/Hungarian uses a letter prior to the datatype prefix to indicate scope as well as a possible prefix prior to that to indicate direction for parameters.

TMH
Note
As a general rule, I would argue against the use of the preprocessor except where there is no other choice. In particular, I favor the use of:define variable in_NumDays as integer no-undo initial 7.to the &scop usage, although it would be nice to be able to say "define constant" instead.Also, with OOABL, I think that many of the typical cases of needing to use include files also disappears because it is possible to encapsulate definitions within a single object rather than needing to share them in multiple locations. Most other include file uses are better done with procedure or method calls in order to provide a clean interface.

© 2006 Progress Software Corporation 8 November 06

Translation Attributes

• All strings that are not to be translated should have :U after them (particularly
filenames, event names and names of event procedures). This includes null
strings and formats.

Internal Procedures and User-Defined Functions

• Internal-procedure (IP) and user-defined function (UDF) names are only to
use letters and numbers with the first letter in lower case and the first letter
of subsequent words capitalised, e.g.

 RUN loadCustomerDetails.

• When naming internal-procedures and user-defined functions use the format

actionObject, e.g. hideWindow.

Operators

• Use symbols instead letters for operators, e.g. = instead of EQ, <> instead of
NE, etc.

File and Path Names

• File names should consist of lower case letters and numbers only. Spaces are
explicitly forbidden.

• They should have a maximum base length of 20 characters, plus a ‘.’ and a
one character extension.

• Files containing source code will follow the following conventions, i.e.

File type Convention

Procedure, with a user-interface that can be
edited with the AppBuilder’s Section Editor

.w

Procedure that does not have a user-
interface and/or cannot be edited with the
AppBuilder’s Section Editor.

.p

Include file .i

OERI Temp-Table Include file et<TableName>.i

OERI Business Entity be<EntityName>.p

OERI DataSource sc<TempTable>.p

OERI ProDataSet Include file ds<EntityName>.i

OERI DataAccessObject da<TableName>.p

OERI DataAccess Validate file da<EntityName>validate.
p

TMH
Note
I am not sure why, in the modern world, we should restrict ourselves to lower case. Certainly, with longer file names, Camel Case assists in reading.

TMH
Note
Obviously, we need to add .cls!

TMH
Note
While I approve of the idea of standard naming components, I would argue against the idea of using prefixes since it causes related components to sort separately. I.e., beCar.p and daCar.p are widely separated. Instead, I suggest suffixes.The nature of these prefixes or suffixes is, of course, dependent on the types used in the programming model. E.g., I am using XxxxxxFinder.cls and XxxxxMapper.cls in association with Xxxxxx.cls which is the domain class.

© 2006 Progress Software Corporation 9 November 06

File type Convention

OERI Business Entity Validate file be<EntityName>validate.
p

• A reference to an external file or resource should always use a relative path,

never an absolute one.

• In path names a ‘/’ should be used in preference to a ‘\’.

9 Programming

General Guidelines

• Developers should actively look for ways to re-use code. Code that can be
used in more than one place should either go into procedures or include files.
The former (whether a super-procedure, an IP in a persistent library or an
external .p) is preferable and should be used if at all possible.

• Variables, buffers, etc. should be declared in the tops of the triggers, IPs or
UDFs, unless they are required to keep their values from one call to another.

• Do not put constants into code, always use a pre-processor instead, e.g.

&scop xiNumNames 10

DEFINE VARIABLE cNames AS CHARACTER EXTENT {&xiNumNames} NO-UNDO.

DO i = 1 TO {&xiNumNames}:

 …

END.

• All variables, parameters, temporary-tables and work tables to be defined as

NO-UNDO. If they do need to be undone if a transaction backs out a comment
to this effect should be written next to the definition.

• All procedures with a user-interface should be capable of running persistently,
unless they create a dialog-box.

• Parameters should not be passed to persistent procedures. Once loaded its
IPs or UDFs should be called to pass data to it.

• Excessive applying of events should be avoided.

• At no time should program flow be dependant on labels (they will change
during translation).

Code Blocks

• Internal procedures to be terminated with ‘END PROCEDURE.’.

TMH
Note
A subject not covered in this section is the use of directories and the PROPATH. In general, for OOABL, I would argue in favor of the standard of beginning with the organization, then the module, then the specific component. E.g., all files related to the Customer object would be in com/cintegrity/AR/Customer .In the AutoEdge application, there is a need for multiple "root" directories to separate server code from "borrowed" code from UI code, etc. When borrowings are from other sources, the organization prefix provides this separation naturally, but if necessary, then I would create a separate root directory for each need and use this naming convention within it. I would argue strongly against the practice of including a nested directory on the same propath, as is done with the AutoEdge example. Use a complete name from the root instead.

TMH
Note
While I agree that the constants should not be hard coded at point of use, see the note on page 7 about the use of the preprocessor for this purpose.

TMH
Note
I think this means having program flow depending on string constants, which I would generally agree is a bad idea, but one can keep these from being translated. As written, it sounds as if one shouldn't doMAIN-BLOCK:repeat: leave MAIN-BLOCK. end.

© 2006 Progress Software Corporation 10 November 06

• CASE statements to be terminated with ‘END CASE.’.

• REPEAT and FOR EACH block headers to be terminated with a ‘:’.

• Block labels are to be in upper case.

• Blank lines should be used to group statements that logically go together, not
to separate every single statement.

• DO blocks should not be used to group ‘logically’ related statements together
simply for cosmetic reasons.

• The END statement that terminates REPEAT, FOR EACH, DO blocks, etc.
should be indented to the same level of the corresponding block header, e.g.

 FOR EACH … :

 REPEAT … :

 …

 END.

 END.

Code layout

• Code inside IPs, UDFs, triggers, code blocks and conditional statements to be
indented two spaces. Other code will not be indented (code directly in the
Definitions section or Main Block of a .w file).

• if statements are to be indented as follows:

IF <condition> THEN

 <single statement>

ELSE <single statement>

IF <condition> THEN

DO:

 <multiple statements>

END.

ELSE

DO:

 <multiple statements>

END.

• CASE statements are to be indented as shown below (also shows indenting

within an IP):

TMH
Note
Just a matter of preference, but I put the THEN on the new line and group THEN and ELSE with the DO. I believe this is clearer with multi-line conditions and is clearer that there are two alternate blocks.

© 2006 Progress Software Corporation 11 November 06

PROCEDURE openQuery :

 DEFINE INPUT PARAMETER pcQueryType AS CHARACTER NO-UNDO.

 CASE pcQueryType:

 WHEN <condition > THEN

 <single statement>

 WHEN <condition> THEN

 DO:

 <multiple statements>

 END.

 END CASE.

END PROCEDURE.

• ASSIGN statements should have their first argument on the same line as the

assign and subsequent one on succeeding lines, but in the same column as
the first one, for example:

 ASSIGN cCustomerName = fiCustomerName:SCREEN-VALUE

 cCustomerTelNo = fiTelNo.

• Each include file argument should go onto a new line, e.g.:

 {src/calc.i &InitValue = 3

 &ResultVar = iNewValue }

Comments

• All source files should have a standard header comment. For those files
generated by the AppBuilder or Eclipse, the standard header should be
modified. (A modified Eclipse Template is available upon request)

/* ---
 File :
 Purpose :
 Syntax :
 Description :
 Created :
 Notes :

 Copyright (C) 2005 by Progress Software Corporation ("PSC"),
 14 Oak Park, Bedford, MA 01730, and other contributors as listed.

 All Rights Reserved.

 The Initial Developer of the Original Code is PSC.

 Software distributed under the License is distributed on an "AS IS"
 basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. You
 should refer to the License for the specific language governing
 rights and limitations under the License.

 ---*/

TMH
Note
Similarly, I would put the new line in front of the THEN, unless the entire WHEN was on a single line and put THEN and DO on the same line.

TMH
Note
For assign, run, and includes where there are multiple arguments or assignments, my preference is to put a line break before the first argument and standardize on an indent of 4. Thus, assign cCustomerName = ... cCustomerTelNo =run CleverRoutine (input cCustomerName, input cCustomerTelNo).

TMH
Note
This seems a bit much to me.

© 2006 Progress Software Corporation 12 November 06

• Comments should be meaningful and add to the reader’s understanding of
why a particular section of code works like it does. It should not simply repeat
the 4GL statements in another way.

• Internal Procedure & Functions should contain a standard header comment
directly after the Procedure/Function declaration. To be consistent with
AppBuilder generated Procedures/Functions it should take the following form:

/*--

 Purpose: Summary of the Procedure/Function

 Parameters: Parameter Description

 Notes: General notes

--*/

• Comments should be indented to the same level as the code they refer to in
the following manner, and should precede the code:

IF <condition> THEN

DO:

 /* This is a multi-line comment that refers to the multiple

 statements that are carried out if the above condition

 is true. */

 <multiple statements>

END.

• When amending code, the comments should be amended as well.

• Where a suitable software configuration management system (such as
Roundtable) is being used obsolete code should be removed, not simply
commented out.

• Where code is written to get round a ‘feature’ that is expected to be removed
in a future release of Progress it should be commented as such. The
comments must include the Progress version with which the code was written.

Reading Records

• Always explicitly state the lock status to be used when retrieving records.

• Use field lists on FOR EACH and DEFINE QUERY statements.

• ROWID should always be used instead of RECID.

TMH
Note
I have no urge to be consistent with AppBuilder and I find this generally excessive. It is simple enough to see what the parameters are since they will follow the define procedure and the name should indicate the purpose. When other comments are needed, add them, but not on every procedure.

TMH
Note
Again, a matter of taste, but I like my comments pulled to a right margin so that they interfere less with the reading of the code.

© 2006 Progress Software Corporation 13 November 06

Line Length

Avoid lines longer than 80 characters, since they're not handled well by many
terminals and tools.

Note: Examples for use in documentation should have a shorter line length-
generally no more than 70 characters.

Wrapping Lines

When an expression will not fit on a single line, break it according to these
general principles:

• Break after a comma.

• Break before an operator.

• Prefer higher-level breaks to lower-level breaks.

• Align the new line with the beginning of the expression at the same level
on the previous line.

If the above rules lead to confusing code or to code that's squished up against the
right margin, just indent 8 spaces instead.

Initialization

Try to initialize local variables where they're declared. The only reason not to
initialize a variable where it's declared is if the initial value depends on some
computation occurring first.

10 Restricted constructs

• No shared variable or other shared objects. Global shared items to be created
where absolutely necessary.

• No WAIT-FOR statements are to be used in interactive code, apart from those
automatically generated by the AppBuilder. Similarly conditional processing
around the AppBuilder generated WAIT-FOR statements not to be removed.

• No INSERT, UPDATE, SET or READKEY statements are to be used in
interactive code. Also editing-blocks are not to be used.

• RECIDs are not to be used unless interfacing to legacy code.

• Only NO-LOCK and EXCLUSIVE-LOCK to be used.

TMH
Note
What are these primitive tools that can't handle lines of more than 80 characters? Short line lengths are all well and good because they tend to be visible in the window, but longer lines help avoid extensive wrapping, which greatly harms readability.

TMH
Note
A matter of taste, but I vote for 4 space indent in continuation lines ... too deep indentation tends to push things off the right.

© 2006 Progress Software Corporation 14 November 06

11 Modelling

As part of the project it is expected that UML models will be utilized throughout
the whole SDLC process. In order to maintain standard terminology the base
Enterprise Architect project must be used as a starting point for any modelling.

When modelling the following guidelines should be observed:

• Class/Component names should match the external progress procedure
name.

• When applicable the language property should be set to ‘Progress’.

• When applicable the provided Progress aware Stereotypes should be used.

